Investigation of Bias in Continuous Medical Image Label Fusion
نویسندگان
چکیده
Image labeling is essential for analyzing morphometric features in medical imaging data. Labels can be obtained by either human interaction or automated segmentation algorithms, both of which suffer from errors. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm for both discrete-valued and continuous-valued labels has been proposed to find the consensus fusion while simultaneously estimating rater performance. In this paper, we first show that the previously reported continuous STAPLE in which bias and variance are used to represent rater performance yields a maximum likelihood solution in which bias is indeterminate. We then analyze the major cause of the deficiency and evaluate two classes of auxiliary bias estimation processes, one that estimates the bias as part of the algorithm initialization and the other that uses a maximum a posteriori criterion with a priori probabilities on the rater bias. We compare the efficacy of six methods, three variants from each class, in simulations and through empirical human rater experiments. We comment on their properties, identify deficient methods, and propose effective methods as solution.
منابع مشابه
Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets
The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...
متن کاملAutomatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion
. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملMulti-atlas segmentation with joint label fusion and corrective learning—an open source implementation
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a c...
متن کاملThe Investigation Factor Structure and Psychometric Properties of Short Version of Trait Thought–Shape Fusion Scale in College Students
The aim of current research has been the Investigation Factor Structure and Psychometric Properties of Short Version of Thought–Shape Fusion (TSF) Scale in College Students. In this correlation study, 204 female students of the Shahid Chamran University of Ahvaz were selected by cluster sampling method and completed the Short Version of Thought–Shape Fusion Scale(TSF) (Coelho et al, 2013), Bod...
متن کاملFinding seeds for segmentation using statistical fusion
Image labeling is an essential step for quantitative analysis of medical images. Many image labeling algorithms require seed identification in order to initialize segmentation algorithms such as region growing, graph cuts, and the random walker. Seeds are usually placed manually by human raters, which makes these algorithms semi-automatic and can be prohibitive for very large datasets. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016